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Semiclassical densities in phase space: Wigner’s distribution 
function for thermodynamic equilibrium 

H J Korscht 
Institut fur Theoretische Physik I, Universitat Munster, D4400 Munster, West Germany 

Received 4 September 1978, in final form 30 October 1978 

Abstract. The quantum-mechanical joint (quasi-) density in phase space (the Wigner 
distribution) for thermodynamic equilibrium is studied in the semiclassical limit h-, 0. The 
approximation is of an asymptotic (WKB) type and nonperturbative in character. The 
equilibrium phase-space distribution can be expressed in terms of classical paths satisfying 
certain well defined boundary conditions. These paths are complex-valued, i.e. classically 
forbidden. The resulting semiclassical expression for the equilibrium Wigner phase-space 
density agrees with the exact quantum result for the analytical solvable case of harmonic 
potentials for all temperatures. 

1. Introduction 

During the last few years an increasing utilisation of statistical-dynamical methods in 
several areas of physics has been observed. Such mixed techniques turned out to be 
almost unavoidable for the theoretical treatment of dynamical systems involving more 
than a ‘few’ (say three) and less than ‘many’ (say loz3) particles. Typical applications 
can be found in nuclear physics in the theory of deep inelastic processes in heavy-ion 
scattering (see, for example, Agassi et a1 1977 and references therein) and in chemical 
physics in the theory of chemical reactions or inelastic molecular collisions (see, for 
example, Schatz et a1 1977, Billing et a1 1978, Miller and Skuse 1978 and references 
therein). A natural object of interest for such a statistical-dynamical theory is the 
phase-space distribution function in classical physics and its quantum-mechanical 
analogue: the Wigner distribution function (Wigner 1932), which closely parallels the 
classical picture of phase-space dynamics. These developments have lead to a renewed 
interest in the Weyl-Wigner equivalent representation of quantum mechanics in terms 
of functions over phase space (Weyll928, Wigner 1932). For more recent work on the 
Weyl-Wigner formalism see Leaf (1968a, b), de Groot and Suttorp (1972), Balazs and 
Zipfel (1973), Remler (1975), Heller (1976, 19771, Kruger and Poffyn (1976, 1977, 
1978), Berry (1977) and Bayen er a1 (1978 a, b). 

In view of the importance of the Wigner function in several areas of physics and, of 
course, its basically interesting feature of providing a smooth transition from quantal to 
classical physics, it seems valuable to gain a better understanding of the Wigner 
phase-space distribution and its relationship to the much better understood classical 
phase-space densities. Such a better understanding, as well as an approximation for 
numerical calculations, can be provided by an asymptotic semiclassical analysis in the 

f Present address: Fachbereich Physik, Universitat Kaiserslautern, D67.50 Kaiserslautern, West Germany. 
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limit ii + 0. A semiclassical approximation for the Wigner distribution has been 
presented recently in the case of pure states (Berry 1977, Heller 1977). It is the aim of 
this paper to extend the well understood semiclassical approximation scheme of pure 
state dynamics (see, for example, the fundamental work of van Vleck (1928) and 
Maslov (1972)) to the case of statistical mechanics, i.e. mixed states, which is much less 
well understood. As a first step towards this goal, a study of the Wigner distribution 
function for thermodynamic equilibrium is presented in the present paper. The 
treatment of the more complicated case of the time development of nonstationary 
mixed-state distributions is deferred to a future publication. 

For the sake of simplicity, we confine ourselves to the one-dimensional case. An 
extension to higher dimensions is possible along the lines presented in this paper, 
but-contrary to common belief-this extension is straightforward only for the case of 
integrable (or separable) systems (see, for example, the early work by Einstein (1917), 
the famous paper by Henon and Heiles (1964) and the recent article by Berry (1977)). 
The general case of non-integrable systems (i.e. systems where no complete compatible 
set of global integrals of motion exists) is at present far from being understood and 
deserves further investigation. 

2. The Weyl transform and Wigner’s distribution function 

In this section we present a brief outline of the Weyl-Wigner equivalent representation 
of quantum mechanics. For the sake of brevity, we give all equations without proofs, 
since these can easily be found in the literature. The transformation suggested by Weyl 
(1928) establishes a one-to-one correspondence between operators in Hilbert space, 
which can be expressed in terms of the canonical position and momentum operators, 
and functions over phase space. The resulting reformulation of quantum mechanics in 
terms of phase-space functions bears the closest possible analogy between classical and 
quantum descriptions of physical systems. Detailed outlines of the Weyl cor- 
respondence can be found in the book by de Groot and Suttorp (1972) and in the papers 
by Imre et a1 (1967), Leaf (1968a, b), Remler (197.51, Heller (1976) and Kruger and 
Poffyn (1976, 1977, 1978). Here we will only give the basic equations, and for 
simplicity we confine ourselves to the one-dimensional case. The Weyl transform of an 
operator A is defined by 

AW(p, q )  = J dq’ exp‘-’”’’”(q +$q’lalq -kq’). (1) 

A similar integral exists in the momentum representation, but here and in the following 
equations we give only the coordinate representations. 

It is obvious that the Weyl transform of a product will generally differ from the 
products of the Weyl transforms: 

(an equality is, of course, obtained in the classical limit). One of the most important 
features for applications of the Weyl formalism is the fact that traces can be evaluated 
as simple phase-space integrals (Leaf 1968a): 

T r a = -  dpdqAW(p,q)  
h ‘ I  (3) 
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and 
1 
h 

Tr A& = Tr &d = - I dp dq AW(p, q)BW(p,  4) .  (4) 

The Wigner function (or Wigner distribution) is the Weyl transform of the density 
operator (Wigner 1932). In the present paper we would like to discuss two special cases 
of these distributions: the pure states and the mixed states in thermal equilibrium, i.e. 
the density operators &, = In>(n I and & = exp(-Pfi) & satisfies the Bloch equation 

ap̂,/ap = -fibp, ( 5 )  

which is nearly the same as the time-dependent Schrodinger equation with imaginary 
‘time’ t = -ihp. This formal similarity is the basis for several interesting cor- 
respondences between equilibrium statistical mechanics and time-dependent wave 
mechanics (see, for example, 9 3). 

The matrix elements of $p  in the position representation are easily expressed in 
terms of the wavefunctions (Ln(q):  

~p ( q z ,  41) = exp( - PEn ) ( L n  (qdljl: (41). (6) 
n 

(Here and in the following we assume for simplicity that there are only bound states and 
no continuum.) The matrix elements (6) satisfy the equation 

Pp2+81 ( q 2 ,  41) = I dq P P 2  (429 q)P@,(q ,  4 1 ) ~  (7) 

i.e. they form a semigroup ( p p = o ( q z ,  ql) = S ( q 2 - q l ) )  (see, for example, Baltin 1978). 
The Weyl transforms of $ , /h  and & / h  are usually denoted as Wigner distribution 

functions. For the case of a pure state we find 

1 
PP (PI 4 )  = ; J dq’ exp( - ipq‘/h) +n ( 4  + i q ’ ~ :  (4  - iq’). (8) 

The Wigner function for thermal equilibrium-which is the central object of the present 
study-is given by 

1 
P: ( P ,  4 )  = ; I dq’ exp( - ipq’lh) ~ p ( q  +is’, q -h’) (9a 1 

or-equivalently-in terms of the Wigner functions (LP ( p ,  4): 

It is widely known that the distributions pw(p, q )  can be regarded as quasi-densities in 
phase space, i.e. averages of dynamical variables can be calculated by direct integration 
over phase space: 

(see equation (4)), where AW(p, q )  is the Weyl transform of A and 
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For the pure states the distribution is normalised: Q, = dp dq p r  ( p ,  4 )  = 1, and for the 
equilibrium distribution Qp = dp dq p T ( p ,  4) is the celebrated thermodynamic parti- 
tion function. It must be stressed that equation (10) is quantum-mechanically exact, 
despite the obvious classical structure of the right hand side. 

The Wigner distribution function for the harmonic oscillator (unit mass and unit 
frequency) can be evaluated in closed form (Groenewold 1946): 

where L, is the Laguerre polynomial with normalisation L,(O) = 1. For the ground 
state n = 0, p r ( p ,  4 )  is non-negative, but for higher quantum numbers there are regions 
in phase space where the (quasi-) phase-space density is negative: p p  shows a fringe 
pattern. The number of fringes (i.e. the number of curves in phase space where p p  
vanishes) is equal to the quantum number n. 

The harmonic oscillator distribution for thermal equilibrium is given by 

p T ( p ,  4)  = ( h  cosh ihp)-'  exp [ - A - ' ( p 2 + q 2 )  tanh i h p ]  (13) 

(see, for example, Meijer 1966). In this case the phase-space density is positive. The 
same may be true for other potentials or even generally; we are not aware of an example 
of a quantum-mechanical equilibrium phase-space density which is negative some- 
where. The semiclassical approximation to p T ( p ,  q )  derived in § 3 of this paper is also 
positive throughout, which supports the conjecture that p p  ( p ,  q )  is indeed non- 
negative (for well behaved potentials). This point deserves further investigation. 

3. Semiclassical Wigner densities in phase space 

The classical limit (h+O) of the Weyl transform and of Wigner's phase-space dis- 
tribution function is, of course, the usual classical description of phase-space 
mechanics: p r ( p ,  4 )  approaches a S function on the energy shell E, = H ( p ,  q )  and 
p p ( p ,  q )  goes to the classical Boltzmann distribution 

h P F ( P ,  4 )  ; PZL(Pt 4 )  = exP(-PH(P, 4 ) )  (14) 

and with H ( p ,  q )  = p2/2m + V ( g )  one obtains the classical density in coordinate space: 

(15) 

The traditional semiclassical approximations in statistical mechanics try to account 
for quantum effects by means of perturbation expansions in terms of a small parameter, 
i.e. in terms of powers of A .  An example is the well known Wigner-Kirkwood 
expansion of the density in coordinate space (Wigner 1932, Kirkwood 1933, Mayer and 
Band 1947, Hornstein and Miller 1972, Miller 1973, Onofri 1978, Baltin 1978). 

In contrast to these series expansions the semiclassical WKB-type approximation 
scheme developed in the last decade (see, for example, the fundamental works of van 
Vleck (1928) and Maslov (1972), and the review articles by Berry and Mount (1972) 
and Miller (1974, 1975)) is essentially nonperturbative in character. It leads to a 
self-consistent semiclassical mechanics which differs both from classical and quantum 
mechanics. The main ingredients of this semiclassical description are the classical paths 
(with the inclusion of classically forbidden, complex-valued trajectories (see, for 

hbp(q)  --* bgL(4)=  (2.rrmlm1/* exp(-@V(q)). 
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example, Korsch and Leissing (1976) and references therein), and on the other hand 
specific algebraic methods for the asymptotic evaluation of matrix elements, integrals, 
or sums (Berry and Mount 1972, Dingle 1973). From the beginning of the development 
of semiclassical dynamics, the formal similarity between the time dependence of pure 
states and the /3 = l / k T  dependence in equilibrium statistical mechanics (compare the 
Bloch equation (5))  lead to a number of semiclassical applications to statistical 
mechanics (Feynman and Hibbs 1965, Miller 1971, 1973, 1974, Stratt and Miller 
1978). A self-consistent semiclassical statistical mechanics, however, is still lacking. 
The present paper is considered as a step in this direction. 

There are several ways to obtain a semiclassical expression for equilibrium density 
matrices. One is based on the formal similarity between the time-dependent pro- 
pagator f i ( t )  = exp[-(i/h)fit] and the density operator & = exp(-Pfi). In this 
approach the well known semiclassical approximations are carried over to statistical 
mechanics by replacing the time t by -ihp (Miller 1971, 1973, 1974, Hornstein and 
Miller 1972, Stratt and Miller 1978). This recipe is, of course, heuristic but quite 
successful. The other approach is exact but mathematically involved: it demands an 
analysis of Feynman path integrals (Feynman and Hibbs 1965) for statistical mechanics, 
i.e. Wiener integrals (see, for example, Truman 1977, Bach et a1 1978). Both 
approaches have been used to derive a semiclassical approximation to the off -diagonal 
and diagonal matrix elements of & in the position representation. Needless to say that 
the results of both approaches are identical. It is not clear at the moment if a direct 
extension of these methods to the objects of our interest, the Wigner distributions in 
equilibrium, is possible. 

The present approach pursues another idea. Because of the impressive mass of 
material available in nonstatistical semiclassical mechanics-a semiclassical expression 
for the pure-state Wigner function has been derived recently (Berry 1977, Heller 
1977)-we found it very promising to establish a direct connection between statistical 
and nonstatistical semiclassical mechanics. In other words, we want to study the 
following diagram in the framework of the semiclassical theory: 

The exact quantum formulae, which express the desired equilibrium Wigner function 
p T ( p ,  q )  in terms of the pure-state wavefunctions &(q)  are given in the preceding 
section. It turns out to be instructive to study the semiclassical limit of both routes 
leading from the wavefunctions $,, (q)-which are by no doubt the best studied objects 
in semiclassical (WKB) mechanics-to the Wigner distributions p: (p,  4 )  in phase 
space: the route via the matrix elements pp ( q 2 ,  q l )  is explored in 0 3.1 and the route via 
the pure-state Wigner function in 0 3.2. 

3.1. Semiclassical density matrix and equilibrium phase-space distributions 

The semiclassical (WKB) bound-state wavefunctions can be written as a linear 
combination: 
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(in the classically allowed region 4< < 4 < 4>; 4* are the classical turning points) of the 
elementary semiclassical wavefunctions 

Here 

is the classical position-dependent action, and I is the classical action variable, defined 
by 

The conjugate angle variable 4(p, 4 )  is given by 

44p, 4 )  = (a/al)s(q, 0. 

I = I, = (n + S)h 

(21) 

The WKB quantum condition 

(22) 

determines the bound-state energies E,. With aS/aq = p ( S ( 4 ,  I) is the generating 
function for the canonical transformation (p, 4 )  + (I, 4)) we find a more familiar looking 
expression: 

with w ( I )  = 6 = aH/aI. The (L*(q, I) of equation (18) are normalised to unity in the 
classically accessible region: 

In order to obtain the semiclassical limit of the matrix elements of the statistical 
operator bB in the coordinate representation, we replace the bound-state wavefunc- 
tions (Ln(4) in equation (6) by the semiclassical expressions (17) and convert the sum 
over the quantum number n into an integral over the continuous action variable 
I = (n +$)h by means of the (exact!) Poisson summation formula in close analogy to the 
well known semiclassical evaluation of the angular momentum sums in potential 
scattering (see, for example, Berry and Mount 1972, Korsch and Leissing 1976, Berry 
and Tabor 1976, 1977, and references therein): 

1 +m 
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with 

817 

x exp( - p E ( I )  kiS(q2, h I) kiS(ql, h I) +l2?rMI) h (26) 

where the first (second) f sign of JF refers to the terms involving 4 2  (41). We now 
evaluate the integrals (26) by the stationary phase approximation (or the method of 
steepest decent if the stationary points are complex) (see, for example, Dingle 1973). 
We obtain the stationarity condition (with q5 = aS/aI and o(I) = aH/aI) 

-pw(I) + (i/h)q52 * (i/h)qh + (i/h)27rM = 0. (27) 

Using b, = or and making the convenient change of variables T = i r  and p = dq/dr = - ip 
(Stratt and Miller 1978) the stationary phase condition (33) can be rewritten as 

h p  = *T2*71+27rih4/U(I). (28) 

The sum over M separates the classical paths according to their topology. Normally 
only the lowest terms contribute, and in the following we take only the dominant part 
M = 0 into account? (for a more detailed discussion see Berry and Mount (1972) and 
Korsch and Leissing (1976)). A solution of (28) exists only for the sign combination J'- 
(the trajectory must be forward in time), and the energy which makes the integral 
stationary is obtained from the solution of 

42 

hp = AT = m p- ' (4 ,  E,) dq 

with p = [2m (-,Es + V ( q ) ) ] ' / 2 .  The second derivative of the exponent at the stationary 
point is 

Defining 

and using the well known relation for the second derivatives of Legendre transforms 
(see Gutzwiller 1967, appendix B) 

(here the first term on the right-hand side vanishes because of our restriction to one 
dimension) we finally obtain the desired result: 

t It is expected, however, that terms with M Z 0 are  important for potentials with a double well, where the 
index M counts the number of oscillations in the central barrier of the potential. 
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This result is, of course, identical to the formula given by Miller (Miller 1971, 1973, 
1974, Hornstein and Miller 1972, Stratt and Miller 1978), which was based on more 
heuristic arguments. For completeness we note the simple closed form expression for 
the second derivative: 

From a general point of view it is interesting to note that-within the self-consistent 
framework of semiclassical mechanics-the semiclassical density matrix ekments 
satisfy the semigroup property (9) (see Baltin 1978). Replacing ppz(q2, 4 )  and ps,(q,  41) 

on the right-hand side of equation (7) by the semiclassical approximation (33) and 
evaluating the integral by the method of stationary phase, we obtain the stationarity 
condition 

i.e., at the stationary point 4 = 4 ,  the final momentum on the trajectory from q1 to 4 ,  
(with time -iApl) equals the initial momentum of the trajectory from 4, to 4 2  (time 
-ihp2), so that the combined path is differentiable at 4 ,  and hence the classical 
trajectory going from q1 to 42 in time -ih(pl +&).  Obviously we have 

(36) @ ( 4 2 ,  4,; f@2)+@(4~ ,  41; APi) = @ ( q 2 ,  41; f@2+p1)), 

and with the relation 

)-' (37) 
a2@(q2, 4,; T ~ )  a2@(4,, q l ;  71) a 2 w 2 ,  qS; T ~ )  - a2@(4,, ql; 71) 

842 34, aqS as1 ( as: aq ? 
= -  a2@(42, 41; 72 -4- 7 1 )  

asl aq2 

between the second derivatives (compare Berry and Mount 1972, 0 7.2) we finally 
reproduce the semiclassical approximation (33) to the left-hand side of equation (7). 

As a last point it should be noted that for the harmonic oscillator (unit mass and 
frequency) the action @ can be calculated in closed form: 

The resulting expression for the semiclassical density matrix elements (33) agrees with 
the exact quantum result, as already stated by Miller (1974). 

The central object of this paper, the semiclassical phase-space density for ther- 
modynamic equilibrium p: ( p ,  q ) ,  can now be derived from the integral (9a). Approxi- 
mating the matrix element pp(q +&', 4 -+4') by the semiclassical expression (33) we 
obtain 

1 
p ~ ( p ,  4 )  =h J dq'exP(-ipq'/h)pp(qz, 41) 
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with q2 = 4 +$4’ and q1 = 4 -&. The integral (39) is again evaluated by the method of 
stationary phase. The stationarity condition is 

m 4  + 24s; E)  +P(4  - t 4 s ;  E,)) = p ,  (40) 

or in short notation $(p2+p1) = p and 3(42 + 41) = 4. The same stationary phase 
conditions have been obtained for the semiclassical pure-state Wigner function (Berry 
1977; see also 0 3.2 this paper). The energy E, is, of course, determined by equation 
(29): 

4 ‘$4. 

4-!qa 
h p = A ~ = m l  p-ldq. (41) 

For the second derivative we obtain 

so that the final result for the semiclassical Wigner density in phase space is given by 

Because of the imaginary time interval -ihp, the trajectories determined by the 
boundary conditions (40) and (41) are complex-valued, i.e. classically forbidden. The 
stationary point 4 ,  is purely imaginary and the energy E, is generally smaller than the 
energy p2/2m + V ( q )  at the phase-space point ( p ,  q ) ,  so that ( p ,  4 )  lies outside the 
energy shell H =Es (compare 0 3.2 and figure 2). 

It is also quite suggestive to rewrite the boundary condition (41) as 

( ~ / P ) A T  = h, (45) 
which closely resembles the energy (1/p = kT) -time uncertainty relation (Stratt and 
Miller 1978). During the time interval AT the trajectory explores the neighbourhood of 
the phase-space point ( p ,  4 )  of interest. There is a reciprocal relationship between the 
temperature T and the time interval AT, and in the extreme classical (high-temperature) 
limit the time interval goes to zero and the trajectory shrinks into the point ( p ,  4 ) .  In this 
limit the pre-exponential factor in equation (43) approaches l / h  and the exponent 
B(p,  4 )  goes to H(p ,  q)h& so that we recover the classical Boltzmann distribution (14). 

It is worthwhile to discuss the analytically solvable case of the harmonic oscillator 
(unit mass and frequency) in more detail. The trajectory satisfying the boundary 
conditions (46) and (47) is given by 

1 
cosh(& 7) 

(4  cosh(.r - i h p )  + ip sinh(r -if@)); q(T) = 

and we have q(0)  = 4 -:q,, q ( h p )  = 4 +$ss with 

qs = -2ip tanh ( $ A @ )  

and 

E,  = $(p’ +q*)/cosh*($h@). 

(47) 

(48) 
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Equation (46) describes a hyperbola in the complex q plane (see figure 1);  the focal 
point of this hyperbola is the classical turning point q o  = (2E,)”2. The trajectory does 
not pass through the phase-space point (p, 4 )  under consideration. Recently Stratt and 
Miller (1978) suggested a relationship between phase-space densities and classical 
trajectories which start at the phase-space point ( p ,  4). But this would necessarily 
require E, = H(p, q) ,  which is clearly inconsistent with the boundary conditions (40) 
and (41). A short calculation using the two-point action function (38) shows that the 
semiclassical phase-space density (43) agrees with the exact result (13) for all values of 
the temperature. This is, of course, a special feature of the harmonic potential. It can 
be expected, however, that the semiclassical formula (43) also gives a reasonable 
approximation for anharmonic potentials at low temperatures. 

\ 
Figure 1. Complex-valued classical path in coordinate space which determines the semi- 
classical phase-space density p y ( p ,  4 )  at the point ( p ,  4) .  For the harmonic oscillator the 
trajectory is a hyperbola going from 41 = 4 - 1 ~ 7 ~  to 42  = 4 + /qn (qr = 2ip tanh(:np)) in time 
Ar = -if@. 40 is the classical turning point. 

3.2. Pure-state Wigner functions and equilibrium phase-space densities 

It is instructive to give a brief discussion of an alternative route leading to the 
semiclassical phase-space densities for thermodynamic equilibrium. A semiclassical 
expression for the Wigner distribution for pure states has recently been derived by 
Berry (1977) (see also Heller 1977): 

Here Z, and Zq denote the p -  and q-derivatives of the action variable (20) evaluated at 
the two solutions 1 and 2 of the stationarity condition 

(50)  

which determines the two points 41.2 = q Ttq, and the momenta p1,2 = p ~ i p ,  on the 
+b (4  + 44s, E” 1 + P (4 - t 4 s ,  E n  )) = p ,  
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energy shell H ( p l ,  41) = H(p2,  qz)  =E, .  The situation is illustrated by figure 2.  The 
stationarity condition ( S O )  shows that the phase-space point of interest (p, q )  bisects the 
chord joining the stationarity points 1 and 2.  The modified action A@, 4;  E )  is given by 

i.e. A@, q ; E )  is the shaded area in figure 2 between the chord and the energy shell. It is 
obvious that we have 

h-'IA(p, q ;  E,)I 27rIn/h = 2 r ( n  ++), (52 )  

T" 

Figure 2. The pure-state Wigner density at the phase-space point ( p ,  q )  is related to the 
classical trajectory on the energy shell H = E,. The two points (pl, ql) and ( p 2 ,  q 2 )  on the 
energy shell determined by $(pl + p 2 )  = p and $ ( q ,  + q2)  = q contribute to the density at 
( p ,  9). The region outside the energy shell is classically forbidden, i.e. the points 1 and 2 
become complex-valued. The phase-space action function A(p, q ;  E,) is equal to the 
shaded area between the energy shell and the chord joining (pl, ql), ( p ,  q ) ,  and ( p z ,  q2) .  

so that the phase-space distribution shows n fringes. For phase-space points outside the 
energy shell the stationary points are complex-valued and the action integral 
A(p, 4;  E,)  is purely imaginary. This leads to a monotonically decreasing distribution 
in this region. On the energy shell the semiclassical Wigner function (49) diverges 
because of the coalescence of the stationary points. A second catastrophy of p?(p ,  4) 
occurs at the boundary of a second classically forbidden region, where the denominator 
of equation (49) vanishes. For points inside this region there is more than one solution 
of the stationary phase condition (50 ) .  The boundary line of this region shows typical 
cusps (an odd number, normally three). For a detailed discussion see the recent article 
by Berry (1977), who also gives a uniform semiclassical approximation for the Wigner 
function. 

In view of the harmonic oscillator results discussed in the preceding section for the 
semiclassical equilibrium Wigner density it should be noted that equation (49) does not 
give the exact result for the harmonic oscillator. This is, of course, obvious from the 
discussion of the catastrophes given above. 

The semiclassical phase-space densities p :  (p, q )  can now be derived by converting 
the sum in equation (96) into an integral, again using the Poisson summation formula 
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(compare 0 3.1): 

W 
P T ( P , ~ ) = C ~ X P ( - P E ~ ) P ~  ( ~ 3 4 )  

n 

m 

(53) 

In a second step we replace p y ( p ,  4 )  by the semiclassical approximation (49) and 
evaluate the integrals again by the method of stationary phase. After some calculation 
the semiclassical formula (43) of § 3.1 is rediscovered. The equilibrium phase-space 
action B(p, 4 ;  h p )  defined in equation (44) is related to the phase-space action at fixed 
energy by the simple formula 

(54) 

1 = - 
h M=-m 

exp( - irM) lo d l  exp( - PE(l )  + 2viMl/h) p p  ( p ,  4) .  

B(p,  4 ; = APE, - iA(p, 4 ; Ed, 

in close analogy to the well known relation between the time-dependent and the 
time-independent classical action function in coordinate space (see, for example, 
Gutzwiller 1967). The energy E, and h p  in equation (54) are interrelated by the 
boundary conditions (40) and (41). 

4. Concluding remarks 

The semiclassical limiting form of the Wigner phase-space density for thermodynamic 
equilibrium has been derived. As a byproduct a rederivation of the semiclassical matrix 
elements of the density operator in coordinate space has been given. The approxima- 
tion agrees with the exact quantum result for the harmonic potential. 

The semiclassical phase-space density should be useful in two ways. From the 
general point of view it offers a way for a better (more ‘classical’) understanding of 
quantum effects arising in statistical mechanics, and may be a first step towards the 
development of a self-consistent semiclassical statistical dynamics. On the other hand, 
it provides a valuable and considerably easy calculable phase-space weighing function, 
which is superior to the classical Boltzmann distribution and takes account of some of 
the quantum effects. Statistical averages of dynamical observables and-last but not 
least-the thermodynamic partition function can be calculated as simple phase-space 
integrals by means of equations (10) and (11). 

The present treatment is, of course, not exhaustive. Future work should remove the 
restriction to one dimension and, probably even more interesting, the restriction to the 
time-independent case of pure states or thermodynamic equilibrium, and to derive a 
semiclassical theory of the time development of nonstationary phase-space dis- 
tributions. 
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